13 research outputs found

    A two-layer dimension reduction and two-tier classification model for anomaly-based intrusion detection in IoT backbone networks

    Get PDF
    With increasing reliance on Internet of Things (IoT) devices and services, the capability to detect intrusions and malicious activities within IoT networks is critical for resilience of the network infrastructure. In this paper, we present a novel model for intrusion detection based on two-layer dimension reduction and two-tier classification module, designed to detect malicious activities such as User to Root (U2R) and Remote to Local (R2L) attacks. The proposed model is using component analysis and linear discriminate analysis of dimension reduction module to spate the high dimensional dataset to a lower one with lesser features. We then apply a two-tier classification module utilizing Naïve Bayes and Certainty Factor version of K-Nearest Neighbor to identify suspicious behaviors. The experiment results using NSL-KDD dataset shows that our model outperforms previous models designed to detect U2R and R2L attacks

    Know abnormal, find evil : frequent pattern mining for ransomware threat hunting and intelligence

    Get PDF
    Emergence of crypto-ransomware has significantly changed the cyber threat landscape. A crypto ransomware removes data custodian access by encrypting valuable data on victims’ computers and requests a ransom payment to reinstantiate custodian access by decrypting data. Timely detection of ransomware very much depends on how quickly and accurately system logs can be mined to hunt abnormalities and stop the evil. In this paper we first setup an environment to collect activity logs of 517 Locky ransomware samples, 535 Cerber ransomware samples and 572 samples of TeslaCrypt ransomware. We utilize Sequential Pattern Mining to find Maximal Frequent Patterns (MFP) of activities within different ransomware families as candidate features for classification using J48, Random Forest, Bagging and MLP algorithms. We could achieve 99% accuracy in detecting ransomware instances from goodware samples and 96.5% accuracy in detecting family of a given ransomware sample. Our results indicate usefulness and practicality of applying pattern mining techniques in detection of good features for ransomware hunting. Moreover, we showed existence of distinctive frequent patterns within different ransomware families which can be used for identification of a ransomware sample family for building intelligence about threat actors and threat profile of a given target

    Deep dive into ransomware threat hunting and intelligence at fog layer

    Get PDF
    Ransomware, a malware designed to encrypt data for ransom payments, is a potential threat to fog layer nodes as such nodes typically contain considerably amount of sensitive data. The capability to efficiently hunt abnormalities relating to ransomware activities is crucial in the timely detection of ransomware. In this paper, we present our Deep Ransomware Threat Hunting and Intelligence System (DRTHIS) to distinguish ransomware from goodware and identify their families. Specifically, DRTHIS utilizes Long Short-Term Memory (LSTM) and Convolutional Neural Network (CNN), two deep learning techniques, for classification using the softmax algorithm. We then use 220 Locky, 220 Cerber and 220 TeslaCrypt ransomware samples, and 219 goodware samples, to train DRTHIS. In our evaluations, DRTHIS achieves an F-measure of 99.6% with a true positive rate of 97.2% in the classification of ransomware instances. Additionally, we demonstrate that DRTHIS is capable of detecting previously unseen ransomware samples from new ransomware families in a timely and accurate manner using ransomware from the CryptoWall, TorrentLocker and Sage families. The findings show that 99% of CryptoWall samples, 75% of TorrentLocker samples and 92% of Sage samples are correctly classified

    How Enterprise Architecture Formative Critical Success Facets Might Affect Enterprise Architecture Success: A Literature Analysis

    Get PDF
    Part 4: Enterprise ArchitectureInternational audienceThough Enterprise Architecture (EA) is getting increasing attentions from both academics and practitioners, EA research around EA success factors remains modest and immature. This study explores how EA formative critical success facets/factors would affect the achievement of EA success. This research highlights the importance of four mediators, i.e., (I) Real and mature business needs; (II) Real and continuous commitment; (III) Actionable EA programs; and (IV) Well-controlled execution of EA programs. This study deepens our understanding of EA success and would be of explanatory contribution to EA value development and action-guiding contribution to EA adoption and implementation
    corecore